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A C C m T I O N S  RESULTING FRW SECOXOARY FLClWS 

WITEIN TURBLNE STATCRS 

By Warner L. Stewart and Robert Y. Wong 

A series of three  single-passage  nozzles,  designed t o   t u r n  the flow 
at different   veloci ty   levels  but to   ident ical   out le t .   condi t ions,  were 
investigated t o  determine whether  secondary-flow  accumulations of 
boundary-layer fluids  within  nozzles  could be minimized by use of low- 
velocity  turning. The r e su l t s  of the investigation  indicated that this  
type of turning with subsequent  acceleration i s  highly e f f ec t ive   i n  min- 
imizing  secondary-flow  accunulations at the  corner where the  suction 
surface  joins the end w a l l s .  

I 

As applied to   tu rb ine  stators, gains   in   turbine performance may be . expected,  provided that the  long blade surfaces  required do not  cause 
excessive wake losses and that three-dimensional  effects on the boundary 
layer of the long blade do not  appreciably  increase the secondary-flow 
accumulations. It i s  t o  be noted that the ef fec t  of reduced  secondary- 
flow accumulation on turbine performance t o  date has not  been  evaluated. 

INTRODUCTION 

Turbine  performance has been  found t o  be affected  to  varying de- 
grees by secondary  flows which may be  divided, i n  general,  into two 
categories: namely, e f fec ts  on turbine-stator performance and ef fec ts  
on turbine-rotor performance. 

Various investigations of secondmy flows within  turbine  stators 
(ref. 1, for  example) have shown that secondary flows cause the accumu- 
l a t ion  of boundary-layer fluids into  cores of  low-momentum fluids at the 
corner where the blade suction surf'ace joins the walls. The mechanism 
by which these  cores form also i s  described and i s  sham  by f low- 
visualization methods (ref. 2 ) .  The actual   s ta tor   losses   ar is ing from 
these secondary flows, however, have been shown t o  be  quite small, and 
hence, the loss itself can  represent  only a smal l  f rac t ion  of the over- 

I all turbine  losses.  In  the  case of the  turbine  rotors,  however, these 
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secondary-flow  accumulations of boundary-layer f luids   within the s ta tor  
and passing  through  the  rotor have been  found to   adversely  affect   rotor  
performance t o  a large  extent (ref 6. 3 and 4) by cawing  large  regions 
of low blade elemental  efficiency at the  turbine  outlet-. Thus, it 
appears t ha t  if the turbine  stator could  be  designed such that these 
accumulations of' boundary-layer f lu ids   resu l t ing  *om secondary flows 
could  be minimized, considerable improvement in   turbine  eff ic iency m i g h t  
be realized. 

A turbine  s ta tor  has the  function of imparting a specified angular 
momentum to the fluid  by  turning  the  flow a specified  angle and increas- 
ing the veloci ty   level  such that the  desired  angular momentum is ob- 
tained.  Conventional  turbine  stators impart the desired angular momzntum 
t o  the Plow by  simultaneously  turning and accelerating  the flow. The 
secondary-flow  accumulations of boundary-layer f luids   within these sta- 
to r s  have l i t t l e  chance t o  dissipate since  there i s  very l i t t l e   d i s t a n c e  
between the end of the  turn and the s ta tor   out le t .  Also, since the 
velocity  level i s  high, the  total-presgure  losees  within  these accumu- 
la t ions  are high, as w i l l  be discussed  in  the subsequent section  Basic 
Considerations. 

Turning the flow the  required  angle at a low veloc i ty   l eve lwi th  
subsequent  acceleration  to  the  desired  outlet  velocity may be one  way 
of minimizing the  accumulation of the boundary-layer f luid  within a 
s ta tor .  ?[his type  s ta tor  would have 8n adv8nt8ge  over the conventional- 
type s t a to r   i n  that (1) the total-pressure loss i n  the secondary-f low 
accumulations formed i n  the turn would be low since  the  velocity  level 
i s  low, and ( 2 )  the  subsequent  acceleration after t h e t u r n  would tend t o  
dissipate  the  accurnulations.that have occurred  In  the  turn. 

The potent ia l  improvement €n turbine  efficiency  by minimizing the 
secondary-flow  accumulations of boundary f luids   within  the  s ta tor  has 
motivated an investigation at the NACA Lewis laboratory  to  determine 
whether low-velocity  turning and subsequent acceleration would be an 
e f k t i v e  means  of accomplishing this. Three single-passage  nozzles 
were investigated, each  designed t o  turn.  the f lm 60° and have an out- 
l e t  Mach n&er oE1.0. The f i rs t  nozzle,  considered  representative of 
current  turbine  stators, i s  designed t o   t u r n  and accelerate  the flow a t  
a high  velocity level and at a constant.  passage  height. The second 
nozzle is the s m  as the first w i t h  the exception of an additfonal  sec- 
t ion  at the   in le t   to   acce le ra te   thenf low from a r e l a t ive ly  low velocity 
t o  that specified at the beginning of the   tu rn  by means of a variable 
passage  height. The third-nozzle,  designated  the  low-velocity-turning 
nozzle, i s  designed to  turn  the.flow  the  desired  angle at a low-velocity 
l e v e l  and at constant  passage  heightwith  subsequent  acceleration  of-the 
flow t o   t h e  desired outlet   velocity by varying the passage height. This 
report  presents a description of the three nozzles  together wlth the re- 
sults of the experinaental.investTgation. These experimental  results are . 
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presented i n   t h e  form of contour p l o t s  of total-pressure r a t i o  across 
the  nozzles a t  the  nozzle  outlet at design  operating  conditions. 

DESIGN OF NOZZLES 

Basic  Considerations 

In  the  f low of real f lu ids ,   the  maximum total-pressure 10SS within 
the boundary layer occurs at the w a l l  where the  velocity i s  zero. Thus, 
the maximum attainable  total-pressure loss of the  boundary-layer f l u i d  
is equal t o  t h e   i n i t i a l   t o t a l   p r e s s u r e  of the f l u i d  minus the   s t a t i c  
pressure  within  the boundary layer.  This  static  pressure  within  the 
boundary layer is approximately  equal t o  that of the  adjacent  free- 
stream  fluid. Thus, for a  given in i t i a l   t o t a l   p re s su re ,  low t o t a l -  
pressure loss within the boundary layer corresponds t o  high free-stream 
stat ic   pressure,  which i n  turn corresponds t o  low free-stream  velocities. 

A tu rb ine   s ta tor   u t i l i z ing   the  aforementioned  considerations would 
turn t he  f low the  desired  angle at a low-velocity  level and then  acceler- 
ate the  f low  to  the  desired  outlet   velocity.  This type s t a to r  would have 
two advantages  over  conventional stator  designs: 

1 (1) The boundary-layer  accumulations resul t ing from secondary  flow 
within  the  turn would have  a r e l a t ive ly  small total-pressure loss, since 
the  veloci ty   level  is lw. . 

(2)  The subsequent  acceleration downstream of the  turn would also 
accelerate   the boundary-layer & c c d a t i o n  and w o u l d  tend  to   diss ipate  
it over the  flow area. 

Description of Nozzles 

The three  nozzles  investigated were designed t o  turn  the flow 600 
and t o  have an  outlet  Mach  number of 1.0. Orthographic and isometric 
views of the  three  nozzles  are shown in   f i gu re  1, and the differences 
in  the  three  nozzles are shown in  the  following  table summarizing the 
design  conditions. Shown a lso   a re   the   s ta t ic -  t o  total-pressure ratios 
P/P corresponding t o  the bhch number, the  significance of which will 
be discussed  in  the  section  Discussion of Nozzles. 
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Inlet Entering 

Mach 
nun- 
ber 

0.3 

.1 

.1 

3.9395  0.3 0.9395 

.9930  .3 .9395 

.9930 .1 .9930 

Leaving 
turn 

Mach 

ber 

P 
nun- p' 

1.0 

.9725 .2 

.5283 1.0 
0.5283 

Outlet Nozzle- 
- outlet  

Mach 

sq in .  b e r  
area, P' num- 
throat P 

1.0 

3 .5283 1.0 

3 .5283 1.0 
3 0.5283 

Nozzle 1. - Isometric and orthographic views of nozzle 1 are shown 
i n  f i m )  . This  nozzle was designed to   c lose ly  approximate the 
velocity  levels found i n  a conventional  turbine  stator. As can be seen 
from the  preceding  Cable,  the flow enters  the  nozzle at a Mach  number of 
0.3 and simultaneously  turns and accelerates   to   the  out le t  Mach  number 
of 1.0. 

Nozzle 2 .  - Nozzle 2 ,  shown i n  figure l ( b ) ,  is similar t o  nozzle 
1 with the exception of a long acceleration  passage upstream of the  turn. 
As can be  seen  from the  preceding  table,  nozzles 1 and 2 are  designed t o  I 

turn  the f low under identical  velocity  levels  except  that  the flow enters 
nozzle 2 at a Mach  number of 0.1 and accelerates  in  the converging  pas- 
sage t o  0.3 before  entering  the  turn. . 

Nozzle 3. - Isometric and orthographic views of nozzle 3 (the low- 
velocity-turning  nozzle)  are shown i n  f igu re   l ( c )  . A comparison of f ig -  
ures l(b) and ( c )  shows tha t  nozzle 3 has an accelerating  passage similar 
t o  t ha t  of nozzle 2. This  accelerating  passage, however, i s  downstream 
of the two-dimensional turn and is symmetrical  about the  center  l ine as 
shown. It can  be  seen from the  f igure and the  preceding  table  that  the 
nozzle was designed t o   t u r n  the f low 60° and simultaneously  accelerate 
from an inlet Mach nwnber 09 0.1 t o  0.2. From the t u r n  the flaw i s  then 
further  accelerated  without  further  turning  to  the  outlet  Mach  number of 
1.0 as it passes through the converging  passage. 

Discussion of Nozzles 

Shown in   t he   t ab l e  is the   s ta t ic -   to   to ta l -pressure   ra t io  correspond- 
ing to   the  design Mach numbers at  the  various  stations  through  the  nozzle 
passages. I n  view of the  discussion  in  Basic  Considerations, it can be 
seen that the  maxim  a t ta inable   total-pressure loss i n  any  secondary- 
flow accumulation resul t ing from flow through  nozzles 1 and 2 is  47.2  
percent,  since 47.2 percent of t he   t o t a l   p re s su re   a t   t he   ou t l e t  is con- 
verted  .into dynamic pressure. However, most of the  turn is -executed at 
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velocit ies much lower than  the  outlet  velocity; hence, t he  maximum 
total-pressure loss  i n   t h e  secondary-flaw  accumulation w i l l  be between 
6 and 47.2 percent.  For  nozzle 3, however, the maximum total-pressure 
loss in any  secondary-flow  accumulations a t  the ex i t  of the   tu rn  is  3 
percent, and the  sdsequent  acceleration may be expected to   d i s s ipa t e  
the  accumulation of these   losses   to  some extent. 

APPARATUS 

A photograph of the  apparatus used in   t h i s   i nves t iga t ion  is shown 
i n  figure 2. The  wooden nozzle shown w a s  mounted on the end of an 8 
foot  long  vertical   pipe which was 1 2  inches i n  diameter. Dry combus- 
t i on  air was brought t o   t h e   t o p  end of th i s   p ipe  f r o m  the  laboratory 
conibustion-air  system  through but terf ly   controls  and suitable  ducting. 
A wood fair ing  with a large  radius  (fig.  1) was used a t  the i n l e t   t o  
each  nozzle t o  assure uniform inlet conditions. 

Instrumentation waa provided t o  measure inlet to ta l   p ressure  and 
out le t   to ta l   pressure  across   the  ent i re   nozzle   out le t .   Inlet   to ta l  
pressure was measured with a static-pressure  tap  approximately 3 pipe 
diameters  upstream of the  nozzle  inlet. A w a l l  s tatic-pressure  tap was 
used  because the  inlet  pipe  diameter was large enough tha t   t he   d i f f e r -  
ence  between t h e   s t a t i c  and to ta l   p ressure  was within  the  accuracy of 
reading on a manometer. Outlet  total-pressure  surveys were made with a 
standard  miniature  total-pressure claw mounted i n  a probe  actuator  that 
could move the probe  angularly  about  the  probe's axis and traverse 'the 
probe both  along and perpendicular t o  i t s  axis. Total-pressure  varia- 
t ions were obtained as a d i f f e ren t i a l  between out le t   to ta l   p ressure  and 
outlet   static  pressure  (barometric  pressure) and transmitted  through a 
pressure  transducer t o   a n  automatic  curve tracer t o  be recorded  against 
probe travel. This recording s y s t e m  had an  accuracy of *2 percent of 
fu l l  scale which was  H.4 pound per  square  inch  for  this  investigation. 
Typical  recorder  traces of total-pressure  vaziations ere shown i n  figure 
3 for  nozzles 1, 2, and 3. 

Although the  recording  system i s  a 2-percent  instrument, it was 
found that the  repeatabi l i ty  of a given  pressure  trace was considerably 
better.   Since  this  investigation w a s  concerned  mainly with  comparative 
r e su l t s ,   t h i s  system was considered  adequate. 

The experimental  investigation w a s  conducted by se t t ing   the  inlet 
to ta l   p ressure  so that a cr i t ica l   p ressure  r a t i o  existed  across  each 
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nozzle. This pressure was maintained  constant  while  surveys of out le t  
to ta l   p ressure  were made i n  a plane 1/8 inch  from the nozzle  outlet  for 
half of the Jet area  ( f ig .  2), since  the  nozzles were symmetrical  about 
a plane  perpendicular to   the  suct ion and pressure  surfaces of the noz- 
zles midway between the end walls. pe.surveys were taken  such tha t  
the  total-pressure  variations  across  the  jet  were comglete.ly  defined. 

RESULTS OF IMVESTIGATION 

As discussed  previously, three single-passage  nozzles were i n v e s t i -  
gated t o  determine the  effectiveness of low-velocity  turning  as a means 
of minfmizing the accumulation of boundary-layer f luids  a t  the nozzle 
outlet .  The nozzles were designed t o  give  identical   outlet  flow condi- 
t ions,  with the flow within  the  passage and at the   i n l e t  of the  nozzles 
being  varied. Nozzle 1 was designed to   t u rn   t he  flow at velocity  levels 
comparable t o   t h o s e  of conventional  turbine  stators. Nozzle 2 was de- 
signed to   t u rn   t he  flow at veloci ty   levels   ident ical   to   those of nozzle 
1 w i t h  a passage of varying  height upstream of the turn to accelerate 
the flow from a r e l a t ive ly  low ve loc i ty   to   tha t   spec i f ied  at the   in le t  
of  the turn.  Nozzle 3, the  low-velocity-turning  nozzle, was designed 
t o   t u r n  the flow two-dimensionally at relatively low veloci t ies  and then 
accelerate the flow t o   t h e  specified outlet  condltions by varying the 
passage height. .. . . . . . . . . . . . . . 

The re su l t s  of t h i s  investigation  are  presented  in  figure 4 i n  
terms o f  indicated  total-pressure  ratio PAutlet /p inlet across the noz- 
zle f o r  one-half of the jet. Also indicated on figure 4 is  the  pro- 
Jetted nozzle out le t  into the survey plane 118 inch from the nozzle out- 
let. A comparison of f igures  4(a) t o  ( e )  shows that there  is an 
accumulation of boundary-layer f l u i d s  a t  the comers between the  suction 
surface  and  the  passage end w a l l  f o r  a l l  three  nozzles. It i s  fur ther  
noted, however, tha t   the  accumulation of boundary-layer  material is 
smallest f o r  nozzle 3 and is distinguished from the boundary layer only 
by a slight hump i n  the pressure-ratio  contours. It is seen  that  the 
maximum total-pressure loss i n  the accumulation is about 4 percent of 
the   in le t   to ta l   p ressure ,  whereas the maximum total-pressure loss i n  
the accumulation of nozzles 1 and 2 i s  of the order of 20  percent. This 
result i s  also shown by the  traces of total-pressure  variation shown i n  
f igu re  3, which were taken  along  the  dotted  lines  in figure 4, and ap- 
pears t o  verify  the  theoretical  considerations  presented  in DESIGN OF 
NOZZLES. Therefore, it i s  concluded that  nozzle 3 WRS effect ive  in  mini- 
mizing the boundary-layer  accumulations at the  out le t  of this nozzle. 

A further  inspection of figure 4 indicates that the  boundary layer 
on the  suction  surface of nozzles 2 and 3 is comparatively  thick and 
that the measured je t   . s ize  i s  greater the the  nozzle  opening. It is 
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possible  that  this  thickening  could have been  caused by the c d i n e d  

suction  surface of the  turn.  T t  i s  a l s o  believed  that  mixing of en- 
trained air with  the jet  could have had considerable  effect on the  
apparent  boundary-layer  thickness  since the survey  plane i s  damstream 
of the  nozzle  outlet. It is fur ther  believed that the  exter ior  geometry 
of the  nozzle  adjacent t o   t h e   o u t l e t  can  also have an  effect  on the mix- 
ing  region,  since it w i l l  affect  the  path  by which the  entrained.air  
must follow  into  the mixing region. F r o m  figure 1 it can be seen  that  
the  exterior geometry of the  nozzle  adjacent  to the nozzle  outlet i s  
similar i n  a l l  three  nozzles  except  for that adjacent t o  the  suction 
surface. It i s  noted tha t  the angle which the  exterior w a l l  adjacent 
t o  the  suction  surface makes w i t h  the  suction  surface  varies  over a 
considerable  range,  and  thus i ts  ef fec t  on the  mixing  and  hence on the 
apparent  boundary-layer  thickness may also be considerable.  Since  the 
effect  of the  exterior geometry on the mixing is unknown, the   s ign l f i -  
cance of the  thickened boundary layer, if any, is obscured. The en- 
largement of the jet  in  the  survey  plane  noted  previously may be attrib- 
uted t o  mwing and t o  the  spread of the mixing region. 

- effects of the  long  surface and some adverse  pressure  gradient on the  

APPLICATION OF' LCIFT-VELOCITY TURNING TO mINE STATCWS 

I As discussed i n   t h e  INTRODUCTION, various  studies have indicated 
that   gains   in   turbine  eff ic iency may be realized if the accumulations 

could be minimized. In  this  investigation,  low-velocity  turning of the  
f l u i d  w i t h  subsequent  acceleration was found t o  be  effective  in  reducing 
the  accmulations of boundary-layer fluids a t  the  outlet.  Since  the 
mass-averaged total-pressure loss in  turbine  stators  has  been sham t o  
be quite small, it is  probable that the  differences  in  the mass-averaged 
total-pressure loss a t  the   ou t le t  of the  nozzles  investigated  herein 
will also be small. Bowever, as previously  pointed  out, it i s  the ac- 
cumulation of the  boundary-layer fluids resul t ing from  secondary flows 
rather  than  the lo s s  i n   t o t a l   p re s su re   i t s e l f   t ha t   appea r s   t o  induce 
appreciable  losses  within  the  turbine  rotor. Rence, even if there i s  
no appreciable  reduction i n  mass-averaged stator  total-pressure loss, 
gains in   turbine  eff ic iency may s t i l l  result from use of s t a to r s  which 
use low-velocity  turning and subsequent  acceleration,  provided that the  
r e l a t ive ly  long blade surfaces do not  form  such large boundary layers 
tha t  blade-wake losses become appreciably  large and that three- 
dimensional  effects on these boundary layers do not  appreciably  increase 
the  secondary-flow  accumulations. It is  t o  be  noted that the  actual  
e f fec t  of reduced s t a to r  secondary-fluw  accumulation on turbine  rotor 
efficiency,  although  indicated by rotor-exit  surveys,  to date has  not 
been evaluated. 

- of boundary-layer f lu ids   resu l t ing  from  secondary  flow i n  the s t a to r  

- 
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From the results opthis   invest igat ion,  it is concluded t h a t  a noz- 
zle  uti l izing  low-velocity  turning w i t h  subsequent  acceleration i s  highly 
e f fec t ive   in  minimizing  secondary-flow  accumulations of boundary-layer 
f lu ids  at the  corner where the  suction  surface Joins the end w a l l .  

L e w i s  Flight  Propulsion  Laboratory 
National Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, February 17 ,  1954 
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Isometric vlew 

Front view 
(a) Nozzle 1. 

I 
- /  - "' 

//' 

Top view 

1 
/ 

"" 

""" 

Side view 

Figure 1. - Isometric and orthographic views of nozzles. - 
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I somet r i c  view 

Front v i m  

Figure 1. - Continued. 

(b) Nozzle 2. 

I somet r i c  and orthographic  
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viewe of nozzles. 
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Front v i e w  

P (c)  Nozzle 3 (low-velocity-tmtng nozzle). 

I Figure 1. - Concluded. Isometric and orthographic views of nozzles. 
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Probe t r a v e l  

(a )  Nozzle 1. 

Figure 3. - Typical automatic  recorder  trace. 
5 '  , ' . - - 
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Probe travel 

(b) Nozzle 2. 

Figure 3. - Continued. Typical automatic recorder trace. 
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Probe t r ave l  

( c) Nozzle 3. 
- 

Figure 3. - Concluded. Typical  automatic  recorder  trace. 
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(a) nozzle 1. 

Flgure 4. - Contams of total-pres- ratio.  
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(b) Nozzle 2. 

Figure 4, - Continued. contoure of total-pressure ratio. 
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Pasaege center Ilnc 

( c )  Hozsle 3. 

P i g w e  4. - Concluded. Contours of total-preasure ratio. 
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